Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth.

نویسندگان

  • Catherine Cheniclet
  • Wen Ying Rong
  • Mathilde Causse
  • Nathalie Frangne
  • Laurence Bolling
  • Jean-Pierre Carde
  • Jean-Pierre Renaudin
چکیده

Postanthesis growth of tomato (Solanum lycopersicon) as of many types of fruit relies on cell division and cell expansion, so that some of the largest cells to be found in plants occur in fleshy fruit. Endoreduplication is known to occur in such materials, which suggests its involvement in cell expansion, although no data have demonstrated this hypothesis as yet. We have analyzed pattern formation, cell size, and ploidy in tomato fruit pericarp. A first set of data was collected in one cherry tomato line throughout fruit development. A second set of data was obtained from 20 tomato lines displaying a large weight range in fruit, which were compared as ovaries at anthesis and as fully grown fruit at breaker stage. A remarkable conservation of pericarp pattern, including cell layer number and cell size, is observed in all of the 20 tomato lines at anthesis, whereas large variations of growth occur afterward. A strong, positive correlation, combining development and genetic diversity, is demonstrated between mean cell size and ploidy, which holds for mean cell diameters from 10 to 350 microm (i.e. a 32,000-times volume variation) and for mean ploidy levels from 3 to 80 C. Fruit weight appears also significantly correlated with cell size and ploidy. These data provide a framework of pericarp patterning and growth. They strongly suggest the quantitative importance of polyploidy-associated cell expansion as a determinant of fruit weight in tomato.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp

In angiosperms, the ovary wall resumes growth after pollination through a balanced combination of cell division and cell expansion. The quantitative pattern of these events remains poorly known in fleshy fruits such as tomato (Solanum spp.), in which dramatic growth of the pericarp occurs together with endoreduplication. Here, this pattern is reported at the level of each of the cell layers or ...

متن کامل

Fruit growth-related genes in tomato.

Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and ...

متن کامل

Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory.

The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of grea...

متن کامل

The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion.

Auxin is known to regulate cell division and cell elongation, thus controlling plant growth and development. Part of the auxin signaling pathway depends on the fine-tuned degradation of the auxin/indole acetic acid (Aux/IAA) transcriptional repressors. Recent evidence indicates that Aux/IAA proteins play a role in fruit development in tomato (Solanum lycopersicum Mill.), a model species for fle...

متن کامل

Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth.

Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 4  شماره 

صفحات  -

تاریخ انتشار 2005